Mossy fiber long-term potentiation deficits in BACE1 knock-outs can be rescued by activation of alpha7 nicotinic acetylcholine receptors.
نویسندگان
چکیده
β-Site amyloid precursor protein-cleaving enzyme 1 (BACE1)-the neuronal β-secretase responsible for producing β-amyloid (Aβ) peptides-emerged as one of the key therapeutic targets of Alzheimer's disease (AD). Although complete ablation of the BACE1 gene prevents Aβ formation, we reported that BACE1 knock-out mice display severe presynaptic deficits at mossy fiber (MF)-to-CA3 synapses in the hippocampus, a major locus of BACE1 expression. We also found that the deficits are likely due to abnormal presynaptic Ca(2+) regulation. Cholinergic system has been implicated in AD, in some cases involving Ca(2+)-permeable α7-nicotinic acetylcholine receptors (nAChRs). Here we report that brief application of nicotine, via α7-nAChRs, can restore MF long-term potentiation in BACE1 knock-outs. Our data suggest that activating α7-nAChRs can recover the presynaptic deficits in BACE1 knock-outs.
منابع مشابه
BACE1 knock-outs display deficits in activity-dependent potentiation of synaptic transmission at mossy fiber to CA3 synapses in the hippocampus.
beta-Amyloid precursor protein cleavage enzyme 1 (BACE1) has been identified as a major neuronal beta-secretase critical for the formation of beta-amyloid (Abeta) peptide, which is thought responsible for the pathology of Alzheimer's disease (AD). Therefore, BACE1 is one of the key therapeutic targets that can prevent the progression of AD. Previous studies showed that knocking out the BACE1 ge...
متن کاملShort- and long-term enhancement of excitatory transmission in the spinal cord dorsal horn by nicotinic acetylcholine receptors.
Spinal administration of nicotinic agonists can produce both hyperalgesic and analgesic effects in vivo. The cellular mechanisms underlying these behavioral phenomena are not understood. As a possible explanation for nicotinic hyperalgesia, we tested whether nicotinic acetylcholine receptors (nAChRs) could enhance excitatory transmission onto spinal cord dorsal horn neurons. Whole-cell patch-cl...
متن کاملGating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage
The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plastic...
متن کاملP6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملLong-Term Potentiation of Excitatory Inputs to Brain Reward Areas by Nicotine
Nicotine reinforces smoking behavior by activating nicotinic acetylcholine receptors (nAChRs) in the midbrain dopaminergic (DA) reward centers, including the ventral tegmental area (VTA). Although nicotine induces prolonged excitation of the VTA in vivo, the nAChRs on the DA neurons desensitize in seconds. Here, we show that activation of nAChRs on presynaptic terminals in the VTA enhances glut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 41 شماره
صفحات -
تاریخ انتشار 2010